Sunday, 26 April 2020

Web-fu - The Ultimate Web Hacking Chrome Extension

Web-fu Is a web hacking tool focused on discovering and exploiting web vulnerabilitites.

 BROWSER INTEGRATION 

This tool has many advantages, as a browser-embedded webhacking tool, is very useful for scanning browser-authenticated applications, if browser can authenticate and access to the web application, the tool also can. Note that some other tools do not support neither certificate authentication nor web vpn accesses.
The integration with chrome, provides a more comfortable and agile way of web-hacking, and you have all the application data loaded on the hacking tool, you don't need to copy the url, cookies, etc. to the tool, just right click and hack.
The browser rendering engine is also used in this tool, to draw the html of the responses.


 FALSES POSITIVES 

When I coded this tool, I was obsessed with false positives, which is the main problem in all detection tools.  I have implemented a gauss algorithm, to reduce the faslse positives automatically which works very very well, and save a lot of time to the pentester.


 VIDEO 

 Here is a video, with some of the web-fu functionalitites:

 VISUAL FEATURES 

This tool has a visual crawler. Normal crawlers doesn't parse the ajvascript, this tool does. The visual crawler loads each link of the web site, rendering the html and executing all the javascript as a normal load, then the links are processed from he DOM and clicked.
A visual form cracker, is also available, althow is experimental and only works on some kind of forms.


 SCANNING FEATURES

The web-fu's portscanner, has a database of a common web ports, like 80,81,8080 and so on.
The cracker module, can bruteforce web directories to find new attack vectors, and can fuzz get and post parameters for discovering vulns, and also crack passwords. There are 9 preloaded wordlists, and you can also load a custom wordlist. Prefilters, falsepositive reductor and render will be helpful. The scanners support SSL, if the website can be loaded in the chrome, can be scanned by web-fu.


ENCODERS & DECODERS

The supported encoders and decoders are: base64, urlescape and urlencode


OTHER FEATURES

A web notepad is available, saving the information on the browser localStorage, there is one notepad per site. A cookie editor is also very useful for pentesting. The inteceptor, is like a web proxy but from the inside of the browser, you can intercept a request There is also a session locker and a exploit web search.


CHROME STORE 
Here is the link to the chrome store, the prize is about one euro, very cheap if you compare with other scanners: Web-Fu on Chrome Store


 With webfu, you will do the best web site pentest and vulnerability assessment.


Continue reading
  1. Hacking 2018
  2. Hacking Articles
  3. Libros De Hacking Pdf
  4. Curso De Growth Hacking
  5. Que Es Hacking Etico
  6. Hacking 2018
  7. Hacking Hardware
  8. Hacking Life

Saturday, 25 April 2020

Ethical Hacking Platform For Penetration Testing | How To Hack The Invite Code: Join Hack The Box (HTB)

Hack The Box

Hack The Box (HTB) is a free platform available to ethical hackers to do a penetration testing for ethical hacking projects. It consist of different type of challenges that are updated constantly. Some of the challenges related to the real world scenarios and rest of the challenges related to learning towards a CTF style of challenges.
Before joining to HTB, there is a simple task for you to prove your skills after that you'll able to create an account, and then you'll be able to access to your HTB Lab, where several challenges await for you to hack them. That's the beginning step for all of us to joining this. If you got success while hacking then you'll get points.

Task For Joining The HTB

Before joining the HTB, there is a task to hack invite code and paste that code in the code box for further registration to your account. You can complete a simple challenge to prove your skills, if you don't hack that then here is a short video below this content about hacking the invite code. Watch the video and hack the code!


In this Video you'll learn about How to join Hack the box (HTB) in Kali Linux and other Linux Distributions.


Background Info:

This is a bit of a harder topic to write about considering most of my audience are hackers not Ethereum developers or blockchain architects. So you may not know what a smart contract is nor how it is situated within the blockchain development model. So I am going to cover a little bit of context to help with understanding.  I will cover the bare minimum needed as an attacker.

A Standard Application Model:
  • In client server we generally have the following:
  • Front End - what the user sees (HTML Etc)
  • Server Side - code that handles business logic
  • Back End - Your database for example MySQL

A Decentralized Application Model:

Now with a Decentralized applications (DAPP) on the blockchain you have similar front end server side technology however
  • Smart contracts are your access into the blockchain.
  • Your smart contract is kind of like an API
  • Essentially DAPPs are Ethereum enabled applications using smart contracts as an API to the blockchain data ledger
  • DAPPs can be banking applications, wallets, video games etc.

A blockchain is a trust-less peer to peer decentralized database or ledger

The back-end is distributed across thousands of nodes in its entirety on each node. Meaning every single node has a Full "database" of information called a ledger.  The second difference is that this ledger is immutable, meaning once data goes in, data cannot be changed. This will come into play later in this discussion about smart contracts.

Consensus:

The blockchain of these decentralized ledgers is synchronized by a consensus mechanism you may be familiar with called "mining" or more accurately, proof of work or optionally Proof of stake.

Proof of stake is simply staking large sums of coins which are at risk of loss if one were to perform a malicious action while helping to perform consensus of data.   

Much like proof of stake, proof of work(mining) validates hashing calculations to come to a consensus but instead of loss of coins there is a loss of energy, which costs money, without reward if malicious actions were to take place.

Each block contains transactions from the transaction pool combined with a nonce that meets the difficulty requirements.  Once a block is found and accepted it places them on the blockchain in which more then half of the network must reach a consensus on. 

The point is that no central authority controls the nodes or can shut them down. Instead there is consensus from all nodes using either proof of work or proof of stake. They are spread across the whole world leaving a single centralized jurisdiction as an impossibility.

Things to Note: 

First Note: Immutability

  • So, the thing to note is that our smart contracts are located on the blockchain
  • And the blockchain is immutable
  • This means an Agile development model is not going to work once a contract is deployed.
  • This means that updates to contracts is next to impossible
  • All you can really do is createa kill-switch or fail safe functions to disable and execute some actions if something goes wrong before going permanently dormant.
  • If you don't include a kill switch the contract is open and available and you can't remove it

Second Note:  Code Is Open Source
  • Smart Contracts are generally open source
  • Which means people like ourselves are manually bug hunting smart contracts and running static analysis tools against smart contract code looking for bugs.

When issues are found the only course of action is:
  • Kill the current contract which stays on the blockchain
  • Then deploy a whole new version.
  • If there is no killSwitch the contract will be available forever.
Now I know what you're thinking, these things are ripe for exploitation.
And you would be correct based on the 3rd note


Third Note: Security in the development process is lacking
  • Many contracts and projects do not even think about and SDLC.
  • They rarely add penetration testing and vulnerability testing in the development stages if at all
  • At best there is a bug bounty before the release of their main-nets
  • Which usually get hacked to hell and delayed because of it.
  • Things are getting better but they are still behind the curve, as the technology is new and blockchain mostly developers and marketers.  Not hackers or security testers.


Forth Note:  Potential Data Exposure via Future Broken Crypto
  • If sensitive data is placed on the blockchain it is there forever
  • Which means that if a cryptographic algorithm is broken anything which is encrypted with that algorithm is now accessible
  • We all know that algorithms are eventually broken!
  • So its always advisable to keep sensitive data hashed for integrity on the blockchain but not actually stored on the blockchain directly


 Exploitation of Re-Entrancy Vulnerabilities:

With a bit of the background out of the way let's get into the first attack in this series.

Re-Entrancy attacks allow an attacker to create a re-cursive loop within a contract by having the contract call the target function rather than a single request from a  user. Instead the request comes from the attackers contract which does not let the target contracts execution complete until the tasks intended by the attacker are complete. Usually this task will be draining the money out of the contract until all of the money for every user is in the attackers account.

Example Scenario:

Let's say that you are using a bank and you have deposited 100 dollars into your bank account.  Now when you withdraw your money from your bank account the bank account first sends you 100 dollars before updating your account balance.

Well what if when you received your 100 dollars, it was sent to malicious code that called the withdraw function again not letting  the initial target deduct your balance ?

With this scenario you could then request 100 dollars, then request 100 again and you now have 200 dollars sent to you from the bank. But 50% of that money is not yours. It's from the whole collection of money that the bank is tasked to maintain for its accounts.

Ok that's pretty cool, but what if that was in a re-cursive loop that did not BREAK until all accounts at the bank were empty?  

That is Re-Entrancy in a nutshell.   So let's look at some code.

Example Target Code:


           function withdraw(uint withdrawAmount) public returns (uint) {
       
1.         require(withdrawAmount <= balances[msg.sender]);
2.         require(msg.sender.call.value(withdrawAmount)());

3.          balances[msg.sender] -= withdrawAmount;
4.          return balances[msg.sender];
        }

Line 1: Checks that you are only withdrawing the amount you have in your account or sends back an error.
Line 2: Sends your requested amount to the address the requested that withdrawal.
Line 3: Deducts the amount you withdrew from your account from your total balance.
Line 4. Simply returns your current balance.

Ok this all seems logical.. however the issue is in Line 2 - Line 3.   The balance is being sent back to you before the balance is deducted. So if you were to call this from a piece of code which just accepts anything which is sent to it, but then re-calls the withdraw function you have a problem as it never gets to Line 3 which deducts the balance from your total. This means that Line 1 will always have enough money to keep withdrawing.

Let's take a look at how we would do that:

Example Attacking Code:


          function attack() public payable {
1.           bankAddress.withdraw(amount);
         }

2.    function () public payable {
         
3.            if (address(bankAddress).balance >= amount) {
4.               bankAddress.withdraw(amount);
                }
}

Line 1: This function is calling the banks withdraw function with an amount less than the total in your account
Line 2: This second function is something called a fallback function. This function is used to accept payments that come into the contract when no function is specified. You will notice this function does not have a name but is set to payable.
Line 3:  This line is checking that the target accounts balance is greater than the amount being withdrawn.
Line 4:  Then again calling the withdraw function to continue the loop which will in turn be sent back to the fallback function and repeat lines over and over until the target contracts balance is less than the amount being requested.



Review the diagram above which shows the code paths between the target and attacking code. During this whole process the first code example from the withdraw function is only ever getting to lines 1-2 until the bank is drained of money. It never actually deducts your requested amount until the end when the full contract balance is lower then your withdraw amount. At this point it's too late and there is no money left in the contract.


Setting up a Lab Environment and coding your Attack:

Hopefully that all made sense. If you watch the videos associated with this blog you will see it all in action.  We will now analyze code of a simple smart contract banking application. We will interface with this contract via our own smart contract we code manually and turn into an exploit to take advantage of the vulnerability.

Download the target code from the following link:

Then lets open up an online ethereum development platform at the following link where we will begin analyzing and exploiting smart contracts in real time in the video below:

Coding your Exploit and Interfacing with a Contract Programmatically:

The rest of this blog will continue in the video below where we will  manually code an interface to a full smart contract and write an exploit to take advantage of a Re-Entrency Vulnerability:

 


Conclusion: 

In this smart contract exploit writing intro we showed a vulnerability that allowed for re entry to a contract in a recursive loop. We then manually created an exploit to take advantage of the vulnerability. This is just the beginning, as this series progresses you will see other types of vulnerabilities and have the ability to code and exploit them yourself.  On this journey through the decentralized world you will learn how to code and craft exploits in solidity using various development environments and test nets.
Continue reading

WHAT IS ETHICAL HACKING

What is ethical hacking?

Ethical hacking is identifying weakness in computer system and/or computer networks and coming with countermeasures that protect the weakness.

Ethical hackers must abide by the following rules-
1-Get written permission from the owner of the computer system and/or computer network before  hacking.
2-Protect the privacy of the organisation been hacked etc.

Ethical Hacking and Ethical Hacker are terms used to describe hacking performed by a company or individual to help identity potential threats on a computer or network.
 

An Ethical Hacker attempts to byepass system security and search for any weak point that could be exploited by Malicious Hackers.

More info


Friday, 24 April 2020

HOW TO CAPTURE SCREENSHOT IN KALI LINUX? – KALI LINUX TUTORIAL

Kali Linux has been the most advanced penetration testing machine introduced yet. It has the most valuable tools used for every sort of hacking. To take advantage of Kali Linux hacking tools, you have to switch your OS to Kali Linux. You can either install Kali Linux as your default OS or just install as a virtual machine within the same OS. You can learn more about how to install Kali Linux Virtualbox. Today in this tutorial, I am just going to share a very simple Kali Linux tutorial on how to capture screenshot in Kali Linux. It's very simple and newbie friendly.

SO, HOW TO CAPTURE SCREENSHOT IN KALI LINUX? – KALI LINUX TUTORIAL

There are two ways to capture a screenshot in Kali Linux. One is the ultimate easy one and the second one is a bit complex but it's also not so complicated. So, don't worry about anything.

INSTRUCTIONS TO FOLLOW

  • In a first way, you can take a screenshot in a similar way as you take in Windows OS by simply clicking the PrntScr button on the keyboard. As you hit that button, a screenshot will be saved in the Pictures folder of your Kali Linux. The major problem with it, it only captures the full screen. We have no control over it to capture a specific window or region.
  • The second way is to take a screenshot using the command. For that, open up a terminal in the Kali Linux and type apt-get install ImageMagick.
  • Once the command is completed and ImageMagick is installed. We have two options to take a screenshot with it. One is to capture full screen and second is to capture a specific window.
  • To capture full screen, type import -window root Pictures/AnyNameOfTheImage.png in the terminal. It will take a full screenshot and will save it to the Pictures directory by the name you specify. Make sure to type .png  at the end of the file name.
  • To take a screenshot of a specific window or region, type import Pictures/AnyNameOfTheImage.png in the terminal and hit Enter, it will turn the cursor to a selection tool. You just click the mouse button and select the area you want to capture. As you will leave the mouse key, screenshot will be saved in the Pictures folder.
That's all how you can capture screenshot in Kali Linux. This is a very simple and beginner-friendly Kali Linux tutorial to help out all the newbies how they can use this features in need. Hope it will be useful for you.

More articles


  1. Curso Hacking Etico Gratis
  2. Hacking Microsoft
  3. Hacking Definition
  4. Machine Learning Hacking
  5. Software Hacking
  6. Programa Hacker
  7. Hacking Linkedin
  8. Wifi Hacking App
  9. Growth Hacking Examples

Thursday, 23 April 2020

Potao Express Samples

http://www.welivesecurity.com/2015/07/30/operation-potao-express/

http://www.welivesecurity.com/wp-content/uploads/2015/07/Operation-Potao-Express_final_v2.pdf


TL; DR


2011- July 2015
  • Aka  Sapotao and node69
  • Group - Sandworm / Quedagh APT
  • Vectors - USB, exe as doc, xls
  • Victims - RU, BY, AM, GE 
  • Victims - MMM group, UA gov
  • truecryptrussia.ru has been serving modified versions of the encryption software (Win32/FakeTC) that included a backdoor to selected targets. 
  • Win32/FakeTC - data theft from encrypted drives
  • The Potao main DLL only takes care of its core functionality; the actual spying functions are implemented in the form of downloadable modules. The plugins are downloaded each time the malware starts, since they aren't stored on the hard drive.
  • 1st Full Plugin and its export function is called Plug. Full plugins run continuously until the infected system is restarted
  • 2nd Light Plugin with an export function Scan. Light plugins terminate immediately after returning a buffer with the information they harvested off the victim's machine.
  • Some of the plugins were signed with a certificate issued to "Grandtorg":
  • Traffic 
  • Strong encryption. The data sent is encapsulated using the XML-RPC protocol.
  • MethodName value 10a7d030-1a61-11e3-beea-001c42e2a08b is always present in Potao traffic.
  • After receiving the request the C&C server generates an RSA-2048 public key and signs this generated key with another, static RSA-2048 private key .
  • In 2nd stage the malware generates a symmetric AES-256 key. This AES session key is encrypted with the newly received RSA-2048 public key and sent to the C&C server.
  • The actual data exchange after the key exchange is then encrypted using symmetric cryptography, which is faster, with the AES-256 key
  • The Potao malware sends an encrypted request to the server with computer ID, campaign ID, OS version, version of malware, computer name, current privileges, OS architecture (64 or 32bits) and also the name of the current process.
  • Potao USB - uses social engineering, exe in the root disguised as drive icon
  • Potao Anti RE -  uses the MurmurHash2 algorithm for computing the hashes of the API function names.
  • Potao Anti RE - encryption of strings
  • Russian TrueCrypt Win32/FakeTC - The malicious program code within the otherwise functional TrueCrypt software runs in its own thread. This thread, created at the end of the Mount function, enumerates files on the mounted encrypted drive, and if certain conditions are met, it connects to the C&C server, ready to execute commands from the attackers.
  • IOC https://github.com/eset/malware-ioc/tree/master/potao

TypeSHA256MD5
1stVersion1fe6af3d704d2fc0c7acd58b069a31eec866668ec6e25f52354e6e61266db8db85b0e3264820008a30f17ca19332fa19
1stVersion2ff0941fe3514abc12484ad2853d22fd7cb36469a313b5ecb6ef0c6391cf78abac854a3c91d52bfc09605506e76975ae
1stVersion54a76f5cd5a32ed7d5fa78e5d8311bafc0de57a475bc2fddc23ee4b3510b9d443b7d88a069631111d5585b1b10cccc86
1stVersion76c7c67274cf5384615a120e69be3af64cc31d9c4f05ff2031120612443c8360d1658b792dd1569abc27966083f59d44
1stVersion244c181eb442fefcf1e1daf900896bee6569481c0e885e3c63efeef86cd64c550c7183d761f15772b7e9c788be601d29
1stVersion887a721254486263f1f3f25f3c677da62ef5c062c3afa7ef70c895bc8b17b424a35e48909a49334a7ebb5448a78dcff9
1stVersion945c594aee1b5bd0f3a72abe8f5a3df74fc6ca686887db5e40fe859e3fc90bb1502f35002b1a95f1ae135baff6cff836
1stVersionab8d308fd59a8db8a130fcfdb6db56c4f7717877c465be98f71284bdfccdfa25a446ced5db1de877cf78f77741e2a804
1stVersionb22a614a291111398657cf8d1fa64fa50ed9c66c66a0b09d08c53972c6536766d939a05e1e3c9d7b6127d503c025dbc4
1stVersionfcfdcbdd60f105af1362cfeb3decbbbbe09d5fc82bde6ee8dfd846b2b844f97214634d446471b9e2f55158d9ac09d0b2
DebugVersion910f55e1c4e75696405e158e40b55238d767730c60119539b644ef3e6bc32a5d7263a328f0d47c76b4e103546b648484
DebugVersionc821cb34c86ec259af37c389a8f6cd635d98753576c675882c9896025a1abc53bdc9255df5385f534fea83b497c371c8
DebugVersionf845778c3f2e3272145621776a90f662ee9344e3ae550c76f65fd954e7277d195199fcd031987834ed3121fb316f4970
Droppersfrompostalsites4dcf14c41b31f8accf9683917bfc9159b9178d6fe36227195fabc232909452af65f494580c95e10541d1f377c0a7bd49
Droppersfrompostalsites8bc189dee0a71b3a8a1767e95cc726e13808ed7d2e9546a9d6b6843cea5eb3bda4b0615cb639607e6905437dd900c059
Droppersfrompostalsites048621ecf8f25133b2b09d512bb0fe15fc274ec7cb2ccc966aeb44d7a88beb5b07e99b2f572b84af5c4504c23f1653bb
Droppersfrompostalsitesaa23a93d2fed81daacb93ea7ad633426e04fcd063ff2ea6c0af5649c6cfa03851927a80cd45f0d27b1ae034c11ddedb0
Droppersfrompostalsitesc66955f667e9045ea5591ebf9b59246ad86227f174ea817d1398815a292b8c88579ad4a596602a10b7cf4659b6b6909d
Droppersfrompostalsitesd6f126ab387f1d856672c730991573385c5746c7c84738ab97b13c897063ff4ae64eb8b571f655b744c9154d8032caef
Dropperswdecoy61dd8b60ac35e91771d9ed4f337cd63e0aa6d0a0c5a17bb28cac59b3c21c24a9d755e52ba5658a639c778c22d1a906a3
Dropperswdecoy4328b06093a4ad01f828dc837053cb058fe00f3a7fd5cfb9d1ff7feb7ebb8e32b4d909077aa25f31386722e716a5305c
Dropperswdecoy15760f0979f2ba1b4d991f19e8b59fc1e61632fcc88755a4d147c0f5d47965c5fc4b285088413127b6d827656b9d0481
Dropperswdecoyb9c285f485421177e616a148410ddc5b02e43f0af375d3141b7e829f7d487bfd73e7ee83133a175b815059f1af79ab1b
Dropperswdecoycf3b0d8e9a7d0ad32351ade0c52de583b5ca2f72e5af4adbf638c81f4ad8fbcbeebbcb1ed5f5606aec296168dee39166
Dropperswdecoydbc1b98b1df1d9c2dc8a5635682ed44a91df6359264ed63370724afa9f19c7ee5a24a7370f35dbdbb81adf52e769a442
FakeTrueCryptextractedexe4c01ffcc90e6271374b34b252fefb5d6fffda29f6ad645a879a159f78e095979b64dbe5817b24d17a0404e9b2606ad96
FakeTrueCryptextractedexe5de8c04a77e37dc1860da490453085506f8aa378fbc7d811128694d8581b89ba7ca6101c2ae4838fbbd7ceb0b2354e43
FakeTrueCryptextractedexe73aae05fab96290cabbe4b0ec561d2f6d79da71834509c4b1f4b9ae714159b42f64704ed25f4c728af996eee3ee85411
FakeTrueCryptextractedexec7212d249b5eb7e2cea948a173ce96e1d2b8c44dcc2bb1d101dce64bb3f5beccc1f715ff0afc78af81d215d485cc235c
FakeTrueCryptSetup42028874fae37ad9dc89eb37149ecb1e6439869918309a07f056924c1b981deff34b77f7b2233ee6f727d59fb28f438a
FakeTrueCryptSetupa3a43bbc69e24c0bc3ab06fbf3ccc35cf8687e2862f86fb0d269258b68c710c9babd17701cbe876149dc07e68ec7ca4f
FakeTrueCryptSetupb8844e5b72971fe67d2905e77ddaa3366ae1c3bead92be6effd58691bc1ff8eccfc8901fe6a9a8299087bfc73ae8909e
FakeTrueCryptSetupfe3547f0e052c71f872bf09cdc1654137ee68f878fc6d5a78df16a13e6de176883f3ec97a95595ebe40a75e94c98a7bd
OtherDroppers2de76a3c07344ce322151dbb42febdff97ade8176466a3af07e5280bd859a18638e708fea8016520cb25d3cb933f2244
OtherDroppers4e88b8b121d768c611fe16ae1f008502b2191edc6f2ee84fef7b12b4d86fe000360df4c2f2b99052c07e08edbe15ab2c
OtherDroppers29dfc81b400a1400782623c618cb1d507f5d17bb13de44f123a333093648048f89a3ea3967745e04199ebf222494452e
OtherDroppers97afe4b12a9fed40ad20ab191ba0a577f5a46cbfb307e118a7ae69d04adc2e2d6ba88e8e74b12c914483c026ae92eb42
OtherDroppers793a8ce811f423dfde47a5f44ae50e19e7e41ad055e56c7345927eac951e966b043f99a875424ca0023a21739dba51ef
OtherDroppers904bb2efe661f654425e691b7748556e558a636d4f25c43af9d2d4dfbe83262e02d438df779affddaf02ca995c60cecb
OtherDroppersb62589ee5ba94d15edcf8613e3d57255dd7a12fce6d2dbd660fd7281ce6234f411b4e7ea6bae19a29343ae3ff3fb00ca
OtherDroppersd2c11706736fda2b178ac388206472fd8d050e0f13568c84b37683423acd155d27d74523b182ae630c4e5236897e11f3
OtherDroppersf1f61a0f9488be3925665f8063006f90fab1bf0bd0b6ff5f7799f8995ff8960e1ab8d45656e245aca4e59aa0519f6ba0
USBSpreaders1acae7c11fb559b81df5fc6d0df0fe502e87f674ca9f4aefc2d7d8f828ba7f5c76dda7ca15323fd658054e0550149b7b
USBSpreaders3d78f52fa0c08d8bf3d42074bf76ee56aa233fb9a6bc76119998d085d94368caca1a3618088f91b8fb2a30c9a9aa4aca
USBSpreaders7d15bd854c1dfef847cdd3caabdf4ab81f2410ee5c7f91d377cc72eb81135ff4a2bb01b764491dd61fa3a7ba5afc709c
USBSpreaders09c04206b57bb8582faffb37e4ebb6867a02492ffc08268bcbc717708d1a8919a59053cc3f66e72540634eb7895824ac
USBSpreaders12bb18fa9a12cb89dea3733b342940b80cd453886390079cb4c2ffcd664baeda2bd0d2b5ee4e93717ea71445b102e38e
USBSpreaders34e6fb074284e58ca80961feda4fe651d6d658077914a528a4a6efa91ecc749d057028e46ea797834da401e4db7c860a
USBSpreaders90b20b1687909c2f76f750ba3fd4b14731ce736c08c3a8608d28eae3f4cd68f3514423670de210f13092d6cb8916748e
USBSpreaders93accb71bf4e776955756c76990298decfebe4b1dd9fbf9d368e81dc1cb9532dabb9f4fab64dd7a03574abdd1076b5ea
USBSpreaders99a09ad92cc1a2564f3051057383cb6268893bc4a62903eabf3538c6bfb3aa9c542b00f903f945ad3a9291cb0af73446
USBSpreaders339a5199e6d0b5f781b08b2ca0ad0495e75e52b8e2fd69e1d970388fbca7a0d6a427ff7abb17af6cf5fb70c49e9bf4e1
USBSpreaders340b09d661a6ac45af53c348a5c1846ad6323d34311e66454e46c1d38d53af8b2646f7159e1723f089d63e08c8bfaffb
USBSpreaders461dd5a58ffcad9fffba9181e234f2e0149c8b8ba28c7ea53753c74fdfa0b0d5609abb2a86c324bbb9ba1e253595e573
USBSpreaders4688afcc161603bfa1c997b6d71b9618be96f9ff980e5486c451b1cc2c5076cbae552fc43f1ba8684655d8bf8c6af869
USBSpreaders7492e84a30e890ebe3ca5140ad547965cc8c43f0a02f66be153b038a73ee53141234bf4f0f5debc800d85c1bd2255671
USBSpreaders61862a55dcf8212ce9dd4a8f0c92447a6c7093681c592eb937a247e38c8109d4e685ea8b37f707f3706d7281b8f6816a
USBSpreaders95631685006ac92b7eb0755274e2a36a3c9058cf462dd46f9f4f66e8d67b9db29179f4683ece450c1ac7a819b32bdb6d
USBSpreadersb8b02cc57e45bcf500b433806e6a4f8af7f0ac0c5fc9adfd11820eebf4eb5d79cdc60eb93b594fb5e7e5895e2b441240
USBSpreaderse57eb9f7fdf3f0e90b1755d947f1fe7bb65e67308f1f4a8c25bc2946512934b739b67cc6dae5214328022c44f28ced8b
USBSpreaderse3892d2d9f87ea848477529458d025898b24a6802eb4df13e96b0314334635d03813b848162261cc5982dd64c741b450
USBSpreadersf1d7e36af4c30bf3d680c87bbc4430de282d00323bf8ae9e17b04862af28673635724e234f6258e601257fb219db9079


More information